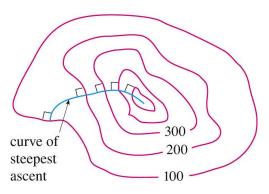

Lesson 17. Maximizing the Directional Derivative

0 Warm up

Example 1. Use the figure below to estimate $D_{\vec{u}}f(2,2)$. Assume $|\nabla f(2,2)| \approx 3$, and the angle between $\nabla f(2,2)$ and \vec{u} is approximately $3\pi/4$.



1 Maximizing the directional derivative

• From the previous lesson: in words, the directional derivative of f at (x, y) in the direction of unit vector \vec{u} is

• Questions:

- In which direction does *f* change the fastest? (steepest ascent or descent)
- What is this maximum rate of change?
- Important theorem: (f is a function of 2 or 3 variables)
 - $\circ~$ The maximum value of $D_{\vec{u}}f$ is $|\nabla f|$
 - $\circ~$ The maximum value occurs when \vec{u} is in the $\underline{\text{same}}$ direction as ∇f

• As a result, the gradient is

2	Examples
---	----------

Example 2. Let $f(x, y) = xe^y$. a. Find the rate of change of f at the point P(2,0) in the direction from P to $Q(\frac{1}{2},2)$. b. In what direction does f have the maximum rate of change? What is this maximum rate of change? **Example 3.** Find the directional derivative of $f(x, y) = \sqrt{xy}$ at P(2, 8) in the direction of Q(5, 4).

hich it occurs.							
mple 5. Find al	l points at which	ch the direction	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	<i>x</i> –
mple 5. Find al	l points at whice	ch the direction an equation ir	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	<i>x</i> –
mple 5. Find al . <i>Hint</i> . Your ans	l points at which	ch the direction an equation ir	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	<i>x</i> –
mple 5. Find al . <i>Hint</i> . Your ans	l points at which	ch the direction an equation ir	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	x –
mple 5. Find al . <i>Hint</i> . Your ans	l points at which	ch the direction an equation ir	on of fastest ch	ange of the fui	f(x,y)	$=x^2+y^2-2$	<i>x</i> –
mple 5. Find al . <i>Hint</i> . Your ans	l points at which	ch the direction an equation ir	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	<i>x</i> –
mple 5. Find al	l points at which	ch the direction an equation ir	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	<i>x</i> –
mple 5. Find al	l points at which	ch the direction an equation ir	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	<i>x</i> –
mple 5. Find al	l points at which	ch the direction an equation ir	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	x –
mple 5. Find al	l points at which	ch the direction an equation ir	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	<i>x</i> –
mple 5. Find al . <i>Hint</i> . Your ans	l points at which	ch the direction an equation ir	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	<i>x</i> –
mple 5. Find al	l points at which	ch the direction an equation ir	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	x –
nple 5. Find al	l points at which	ch the direction an equation ir	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	x –
mple 5. Find al	l points at which	ch the direction an equation in	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	x –
mple 5. Find al	l points at which	ch the direction an equation ir	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	x -
mple 5. Find al	l points at which	ch the direction an equation ir	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	x -
nple 5. Find al	l points at which	ch the direction an equation ir	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	<i>x</i> –
mple 5. Find al	l points at which	ch the direction an equation ir	on of fastest chan x and y.	ange of the fur	f(x,y)	$=x^2+y^2-2$	<i>x</i> –
mple 5. Find al	l points at which	ch the direction an equation in	on of fastest chan x and y.	ange of the fur	f(x,y)	$=x^2+y^2-2$	x –
mple 5. Find al	l points at which	ch the direction an equation ir	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	<i>x</i> –
mple 5. Find al	l points at which	ch the direction an equation ir	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	<i>x</i> –
mple 5. Find al	l points at which	ch the direction an equation in	on of fastest ch	ange of the fur	f(x,y)	$=x^2+y^2-2$	x -